Diabetes Adversely Affects Macrophages During Atherosclerotic Plaque Regression in Mice
نویسندگان
چکیده
OBJECTIVE Patients with diabetes have increased cardiovascular risk. Atherosclerosis in these patients is often associated with increased plaque macrophages and dyslipidemia. We hypothesized that diabetic atherosclerosis involves processes that impair favorable effects of lipid reduction on plaque macrophages. RESEARCH DESIGN AND METHODS Reversa mice are LDL receptor-deficient mice that develop atherosclerosis. Their elevated plasma LDL levels are lowered after conditional knockout of the gene encoding microsomal triglyceride transfer protein. We examined the morphologic and molecular changes in atherosclerotic plaques in control and streptozotocin-induced diabetic Reversa mice after LDL lowering. Bone marrow-derived macrophages were also used to study changes mediated by hyperglycemia. RESULTS Reversa mice were fed a western diet for 16 weeks to develop plaques (baseline). Four weeks after lipid normalization, control (nondiabetic) mice had reduced plasma cholesterol (-77%), plaque cholesterol (-53%), and plaque cells positive for macrophage marker CD68+ (-73%), but increased plaque collagen (+116%) compared with baseline mice. Diabetic mice had similarly reduced plasma cholesterol, but collagen content increased by only 34% compared with baseline; compared with control mice, there were lower reductions in plaque cholesterol (-30%) and CD68+ cells (-41%). Diabetic (vs. control) plaque CD68+ cells also exhibited more oxidant stress and inflammatory gene expression and less polarization toward the anti-inflammatory M2 macrophage state. Many of the findings in vivo were recapitulated by hyperglycemia in mouse bone marrow-derived macrophages. CONCLUSIONS Diabetes hindered plaque regression in atherosclerotic mice (based on CD68+ plaque content) and favorable changes in plaque macrophage characteristics after the reduction of elevated plasma LDL.
منابع مشابه
Diabetes Mellitus Adversely Affects Macrophages During Atherosclerotic Plaque Regression in Mice
RESEARCH DESIGN AND METHODS—Reversa mice are LDL receptor–deficient mice that develop atherosclerosis. Their elevated plasma LDL levels are lowered after conditional knockout of the gene encoding microsomal triglyceride transfer protein. We examined the morphologic and molecular changes in atherosclerotic plaques in control and streptozotocin-diabetic Reversa mice after LDL lowering. Bone marro...
متن کاملSuppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression.
Experimental models of atherosclerosis suggest that recruitment of monocytes into plaques drives the progression of this chronic inflammatory condition. Cholesterol-lowering therapy leads to plaque stabilization or regression in human atherosclerosis, characterized by reduced macrophage content, but the mechanisms that underlie this reduction are incompletely understood. Mice lacking the gene A...
متن کاملOverexpression of tissue inhibitor of metalloproteinase 3 in macrophages reduces atherosclerosis in low-density lipoprotein receptor knockout mice.
OBJECTIVE Tissue inhibitor of metalloproteinase 3 (TIMP3) is a stromal protein that inhibits the activity of proteases and receptors. TIMP3 is downregulated in metabolic and inflammatory disorders, such as type 2 diabetes mellitus and atherosclerosis, particularly in regions enriched with monocyte/macrophage cells. To investigate the role of TIMP3 in atherosclerosis, we generated a new mouse mo...
متن کاملInflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression.
Atherosclerosis is a chronic inflammatory disease, and developing therapies to promote its regression is an important clinical goal. We previously established that atherosclerosis regression is characterized by an overall decrease in plaque macrophages and enrichment in markers of alternatively activated M2 macrophages. We have now investigated the origin and functional requirement for M2 macro...
متن کاملThe anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis
Physical exercise is the cornerstone of cardiovascular disease treatment. The present study investigated whether exercise training affects atherosclerotic plaque composition through the modification of inflammatory-related pathways in apolipoprotein E knockout (apoE(-/-)) mice with diabetic atherosclerosis. Forty-five male apoE(-/-) mice were randomized into three equivalent (n=15) groups: cont...
متن کامل